UNC100 Integra Manual

New Generation Building Security

Copyright Notice

Copyright[©] 1995-2014 by RBH Access Technologies Inc.

All rights reserved Worldwide. Printed in Canada. This publication has been provided pursuant to an agreement containing restrictions on its use. No part of this book may be copied or distributed, transmitted, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties without the express written consent of RBH Access Technologies Inc., Mississauga, Ontario, Canada.

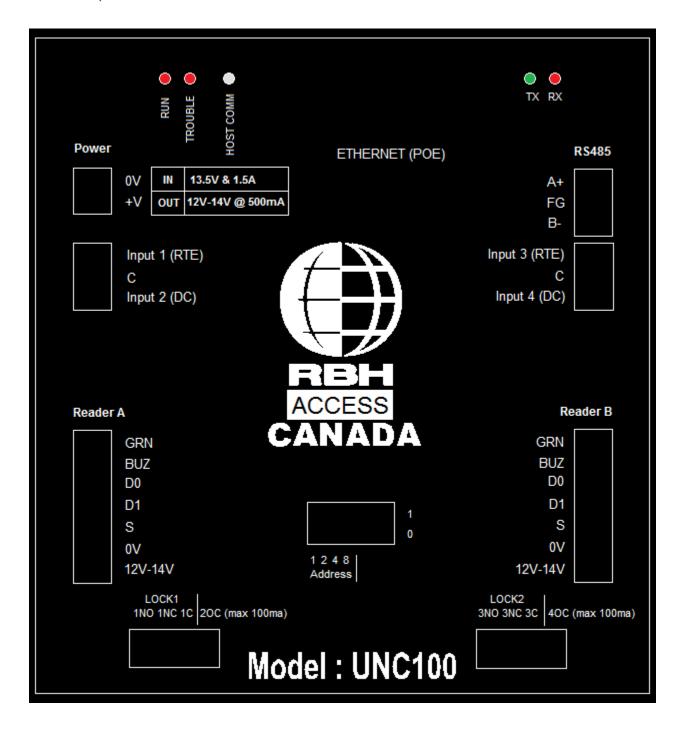
Trademark

Integra™ is the trademark of RBH Access Technologies Inc. Windows is a trademark of Microsoft Corporation. All other product names mentioned herein are the property of their respective owners. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

Disclaimer

This book is provided *as is*, without warranty of any kind, either express or implied, including but not limited to performance, merchantability, or fitness for any particular purpose. Neither RBH Access Technologies Inc. nor its dealers or distributors shall be liable to any person or entity with respect to any liability, loss, or damage, caused, or alleged to have been caused directly or indirectly by this information. Further RBH Access Technologies Inc. reserves the right to revise this publication, and to make changes to the content hereof from time to time, without the obligation of RBH Access Technologies Inc. to notify any person or organization of such revision or changes.

RBH ACCESS TECHNOLOGIES INC. 2 Automatic Road, Suite 108 Brampton, Ontario CANADA L6S 6K8


Revision History

Editor	Revision	Comment	Date mm/dd/yy
DM	1.0	First Release	08/13/13
RB	1.1	Removed reference to fire input Removed partial firmware upgrade (formats) Added dip-switch 5 Added Revision History Updated copyright Eliminated reference to rack mount type Clarified the use of the Power Input/ Output Moved all cable specs to one location. Moved all input specs to one location. Moved all output specs to one location. Reduced the number of pages.	03/19/14
DM	1.1	Minor editing of text.	03/24/14
RB	1.2	Changing output voltage from 12V to 12v – 14v Changing battery charger spec	07/21/14
DM	1.2	Editing of text: -Changed graphic -Removed relevant information -Confirmed correct specifications	07/30/14
DM	1.2	Added ULC text. Reconfigured order of pages.	08/06/14

New Generation	
Building Security	
Copyright Notice	2
Trademark	2
Disclaimer	2
Revision History	3
Panel Graphics	6
Introduction	7
ULC-S319-05 III	7
Battery Charger	7
Reverse Battery Protection	7
Battery Test	7
Fuse Monitoring	7
Diagnostic LED's	7
Tamper Detection	7
Power Input / Output	8
Communication	8
Networks	8
RS485 Applications	8
DIP Switch Settings	8
Controller Addressing	9
RS485 (HOST) Port Baud Rate Selection	10
Host Connection	11
PC to UNC100 Connection – RS485 Wiring	11
UNC100 TCP/IP Connection	12
Reader Interface	14
Reader Connection	14
Outputs	15
Switching Inductive Devices (Locks, Bells)	15
Output Operation	16
General Purpose Output	16
Lock Output	16
Handicap Output	16
Forced / Tamper	16
Modem Power Output	16
Supervised Inputs	17

Input Circuit Types	17
Input Applications	18
Request to Exit (RTE)	19
Door Contact (DC)	19
General Purpose	19
Access Point Operating Modes	19
High Security	19
Unlocked	19
Tamper	19
Lockout Alarm	19
Door Held Open Warning	19
Door Held Open Alarm	19
Keypad / Reader Combination	19
Access Granted	19
Access Denied	19
UNC100 Specification	20
Cable Specification	20

Panel Graphics

Introduction

The UNC100 has been designed as a two door access control panel with a built in local area network interface, that can also provide a single door in/out access point.

The network interface also utilizes a POE (power over Ethernet) converter.

ULC-S319-05 III

For ULC-S319-05 III compliance, all wiring into the panel's cabinet must enter through metal conduit. Also be sure to mount the panel in a protected area.

Battery Charger

The battery charger routes input power from the 13.8v input source or POE module and constantly monitors the battery voltage.

Reverse Battery Protection

A combination of a three ampere diode and a 1.6 amp thermal fuse protects against accidental connection of a battery in the reverse direction.

Battery Test

A battery test cycle is operator initiated or scheduled. When initiated the charger is turned off and a 24Ω resistor provides a load to the battery for about ten seconds. If during this period the voltage drops below 10 volts a battery alarm message is sent to the host, otherwise a battery normal message is sent.

Fuse Monitoring

Besides monitoring the battery voltage the UNC100 also monitors the input voltage (DC), auxiliary voltage (aux) and the reader voltage (reader) and reports to the host whenever the state changes.

Diagnostic LED's

The RS485 circuit has a red and green LED to indicate when a signal is received or transmitted.

Host Comms LED is a bicolour LED that turns red when receiving data from the host, and turns green when transmitting of data.

The Run LED will flash slowly when connected to the host and quickly when not connected.

The Trouble LED will flash when there is a power problem such as a low battery or low auxiliary power is detected.

Tamper Detection

A tamper wire may be connected to JP1 located close to the center of the board. A short to this input is normal and an open is alarm.

Power Input / Output

Located on the top right corner of the board is a jumper that selects if the power terminals are to be used to supply power or provide power. Select "OUT" when using a POE supply and require 13.8V @ 500ma for other equipment.

When not using POE, the jumper should be set to "IN".

The UNC100 controller requires 13.8VDC to be supplied from an external source. (Note: Although the unit can run on 12VDC, you will need 13.8VDC to be able to charge backup batteries.

Communication

The UNC100 has one RS485 port and an Ethernet 10/100 interface. Communications from the host computer running Integra™ software can be achieved in the following ways; either via the Ethernet interface or via RS485 through a direct connection to a designated channel. The UNC100's RS485 channel may be programmed as either NONE or INTEGRA. Use the DIP switch to select baud rate for Host communications as 9600, 38400, 57600, or 115200.

Networks

There are two networks supported by the UNC100 these are:

- 1) **Host Communications** through the Ethernet or direct connection.
- 2) **Integra Communications** for devices such as additional IRC-2000s or URC-2000s starting at address 2, and PC100s.

RS485 Applications

Application name	Description	
None	No connection to other devices.	
Integra	The Integra selection connects the UNC100 controller to other Integra units (e.g. IRC-2000s and URC-2000s) on a high-speed RS485 network.	

DIP Switch Settings

The UNC100 DIP switch controls the device's address and serial port baud rate.

Note: To Clear Panel memory – All DIP switches must be off and the unit powered off and on.

DIP Switch		
DIP Switch	Function	
1 - 4 Controller Address		
5 Ethernet Secure Mode ¹		
6,7 Controller Baud Rate		
8	Not used	

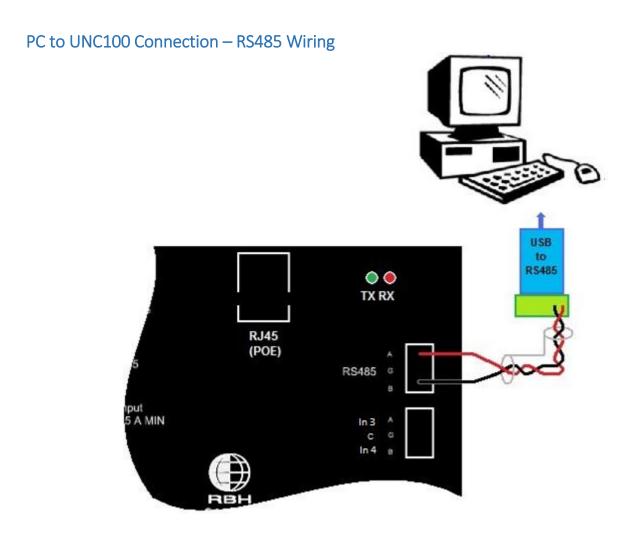
¹ DIP switch 5 up will enables Ethernet Secure Mode. This will prevent access to the panel's programming through the Ethernet.

UNC100 Axiom Hardware Manual V1.2

Controller Addressing

Use DIP switches 1, 2, 3, and 4 to select the controller address. The address is binary coded and the switch settings for all fifteen possible addresses are given below.

Controller Addressing				
Switch 1	Switch 2	Switch 3	Switch 4	Address
Off	Off	Off	Off	Clear Memory
On	Off	Off	Off	1
Off	On	Off	Off	2
On	On	Off	Off	3
Off	Off	On	Off	4
On	Off	On	Off	5
Off	On	On	Off	6
On	On	On	Off	7
Off	Off	Off	On	8
On	Off	Off	On	9
Off	On	Off	On	10
On	On	Off	On	11
Off	Off	On	On	12
On	Off	On	On	13
Off	On	On	On	14
On	On	On	On	15


RS485 (HOST) Port Baud Rate Selection

The controller's serial port baud rate is set with controller DIP switches 6 and 7. This setting determines the speed used to communicate with the PC; the controller baud rate must be the same as the baud rate set for the port within the Integra $^{\text{TM}}$ software. The default baud rate is 9600.

Controller Baud Rate Selection			
DIP Switch 6	DIP Switch 7	Baud Rate	
OFF	OFF	9600	
ON	OFF	38400	
OFF	ON	57600	
ON	ON	115200	

Host Connection

The controller is connected to either a serial port on the PC or through the local Ethernet via a static IP address. The means of communication is configured in the Integra^{TM} software under the network's properties under the *Comms* tab.

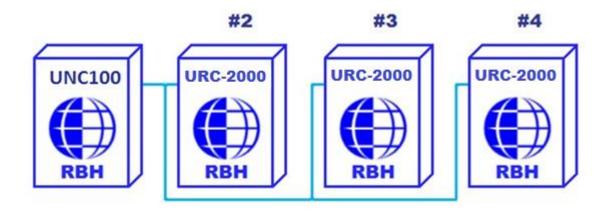

Cable Specification

Twisted pair, shielded, 18 to 22 AWG

Maximum Cable Length 2000-4000 feet (600-1200 meters)

UNC100 TCP/IP Connection

The master controller in some installations may not be directly connected to the PC and may be linked by the local Ethernet. The system supports a static IP address only [default address is 192.168.168.125]. To change the IP address of the unit you can either use IP Locator [a utility program provided by RBH] or Telnet.


PC to UNC100 Connection - LAN

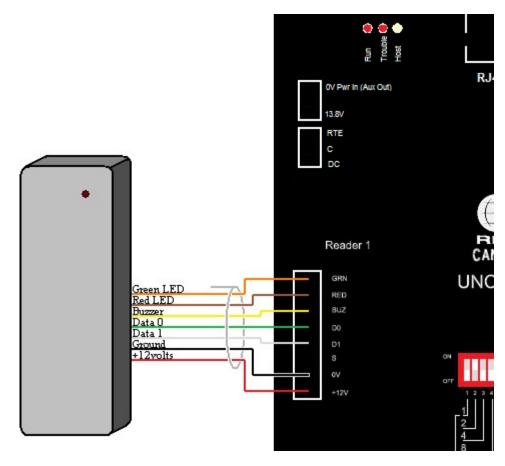
Name	Defaults	Description and notes
IP ADDRESS	192.168.168.125	Local Ethernet address.
SUBNET MASK	255.255.255.0	Local Ethernet mask
IP GATEWAY	0.0.0.0	For future use when DNS option becomes available.
PORT NUMBER	3002	Primary port number.
ALT PORT NUMBER	3003	Alternate port number applies to "LAN" application.
RS485	INTEGRA	Set the RS485 to INTEGRA in order to connect via RS485 to the PC and other Integra™ devices.
Telnet Password	password	This is a string of up to 10 characters that allows the user access to this program.

Integra™ Network

URC2000 panels may also be used in place of IRC-2000 panels.

*** When UNC100 panels are used in conjunction with IRC2000 and URC2000 panels the last panel in the line must be terminated.

Reader Interface


Two standard Wiegand interfaces provide the following connections for typical proximity readers. Thermal fuse protected power (500ma @13vdc).

Reader Tamper Input(s): Initially, if open it will be ignored, but once a short is connected it will report a reader tamper alarm whenever the input is opened.

LED and beeper outputs are open collector current limited to 100ma.

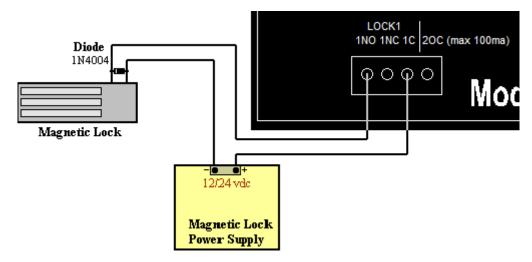
Reader Connection

¹ Reader wire colours may vary for different reader manufactures. Please verify your wiring.

UNC100 Axiom Hardware Manual V1.1

RBH Access Technologies Inc.

Outputs


There are two form C relays and two open collector outputs that can be programmed as general purpose or default applications. The contacts are rated for 2 amperes at 30vdc. The recommended use of the relays is to provide isolated outputs for driving electric strikes or magnetic locks at a maximum voltage of 24v. The open collector outputs are current limited to 100 milli-amperes direct current only.

Number	Default Application	Туре
1	Lock Reader 1	Relay form C
2	Forced Entry Alarm Reader 1	Open Collector (100ma)
3	Lock Reader 2	Relay form C
4	Forced Entry Alarm Reader 2	Open Collector (100ma)

Switching Inductive Devices (Locks, Bells)

Exercise caution when switching an inductive load. Inductive devices include external relay, solenoids, bells, and door locks. All of these devices generate extremely high voltage spikes (*several thousand volts*) when applied power is removed. Possible disruption of operation could occur if this interference gets on to the electronic circuit board.

This interference can be suppressed by placing a diode (1N4001 or similar) across the lock or other inductive device being switched. Connect the diode cathode (end with band) to the positive terminal and the other end to the negative terminal. The diode must be placed at the device being switched and not at the controller.

Output Operation

General Purpose Output

General Purpose Outputs are outputs that are user controlled. They are activated and de-activated by user defined links and schedules.

Lock Output

For magnetic locks, the relay should be configured from the PC as On State de-energized for fail-safe operation. If power fails (AC and battery) the power to the magnetic lock is removed and the door is opened.

Handicap Output

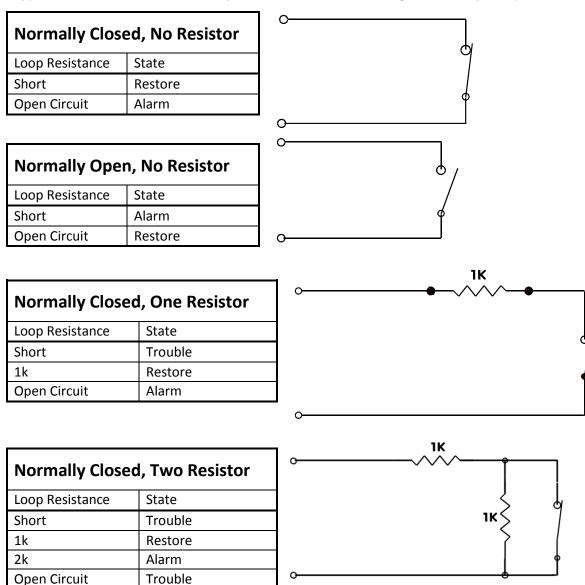
This output is used to drive door operators. It turns on in less than one second after the Lock Output is turned on, and stays on until the Lock Output is turned off. Only designated cardholders will activate this output.

Forced / Tamper

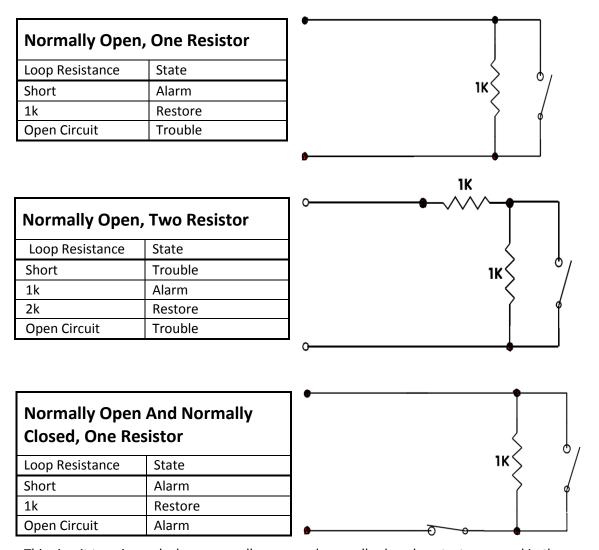
The Forced/Tamper output turns on if the door is forced open or if a reader tamper is detected. This output remains on for as long as the alarm condition exists.

Modem Power Output

The Modem Power Output is a normally activated output that is used to reset a modem by momentarily removing the power from the modem.


Supervised Inputs

The UNC100 has 4 fully supervised inputs. Each input is individually programmable from the PC


Each input has four states: Restore, Alarm, Trouble, and Illegal. Trouble is reported if a short or break is detected on a supervised circuit and illegal is reported if the measured loop resistance lies between valid states. For example, if the circuit type is programmed as "2 resistors normally closed", 1k represents a restored state and 2k represents an alarm state. If the loop resistance changes by more than 15% but not enough to enter the next state, an illegal state is reported.

Input Circuit Types

The UNC-100 supports seven different input circuit types ranging from no resistor for low security applications to two resistor normally closed circuits where the highest security is required.

This circuit provides a high degree of supervision and detects both short and open circuit fault conditions. Use this circuit in high security applications.

This circuit type is used where normally open and normally closed contacts are used in the same loop.

Input Applications

Number	Default Application
1	General Purpose
2	RTE (Request to Exit) Reader A
3	DC (Door Contact) Reader A
4	RTE (Request to Exit) Reader B
5	DC (Door Contact) Reader B

Request to Exit (RTE)

The Request to Exit [RTE] input is connected to a push button mounted on the door or to a motion detector mounted near the door. A normally open or normally closed button can be used and the circuit type can be programmed from the PC. Activating the RTE input will unlock the door. The RTE can be disabled by time zone.

Door Contact (DC)

The Door Contact [DC] input monitors the state of the door. Forced entry, door held open alarm, and door held open warning require monitoring of the door state.

General Purpose

The General Purpose selection is used for inputs that are not directly associated with the access point.

Access Point Operating Modes

High Security

The Red LED flashes quickly.

In High Security Mode, only cardholders with High Security Privilege are allowed access.

Unlocked

The green LED turns on to indicate the door is unlocked.

Tamper

The Buzzer sounds continuously.

Lockout Alarm

The Buzzer beeps rapidly.

A lockout alarm occurs when a user-defined number of "Access Denied" messages occur.

These messages can include "Invalid Card Number", "No Access at this Time", "No Access at this Reader", or "Invalid PIN Code".

Door Held Open Warning

The Buzzer beeps slowly.

Door Held Open Alarm

The Buzzer sounds continuously.

Keypad / Reader Combination

The Buzzer emits a short beep every second after a card is presented, until a PIN is entered.

Access Granted

The Buzzer emits one long beep and the green LED turns on for the duration of the unlock time.

Access Denied

The Buzzer emits two short beeps and the red LED flashes twice.

UNC100 Specification

Controller Power Requirements	12 – 14vdc	
Current Consumption	250mA	
Processor	32 bit micro controller	
Memory	2MB	
Panels per Network	16	
HOST Ethernet speed	10/100 TCP/IP Ethernet, RS485 4 wire	
HOST RS485 Speed	9600, 38400, 57600, 115200 baud	
Clock/RAM backup battery	3v Lithium battery CR1632	
Real Time Clock	Built-in as standard	
Watch Dog Circuit	Built-in as standard	
Board Dimensions	H 5½ in x W 5 in (14 x 12½ cm)	
Operating Temperature	0 to 70C (35 - 150F)	
Operating Humidity	20 to 85% RH (non-condensing)	

Cable Specification

Circuit Function	Cable type	Length
PC To Controller (Ethernet)	CAT5 communications cable	323 feet (100 meters)
PC To Controller (RS485)	Twisted pair, shielded, stranded	2000-4000 feet
	18 to 22 AWG	(600-1200 meters)
Reader	20 to 22 AWG, 6 or 8-conductor,	500 feet (150 meters)
	stranded, shielded (not twisted)	
Input / Output Port Circuit Loop	2-conductor, 20 to 22 AWG	1000 feet (300 meters)